首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77544篇
  免费   3247篇
  国内免费   3905篇
  2023年   760篇
  2022年   915篇
  2021年   2341篇
  2020年   1360篇
  2019年   1701篇
  2018年   1482篇
  2017年   1187篇
  2016年   1768篇
  2015年   3689篇
  2014年   7056篇
  2013年   6553篇
  2012年   5204篇
  2011年   6007篇
  2010年   4251篇
  2009年   3990篇
  2008年   4092篇
  2007年   4315篇
  2006年   2922篇
  2005年   2614篇
  2004年   1762篇
  2003年   1469篇
  2002年   1318篇
  2001年   941篇
  2000年   873篇
  1999年   849篇
  1998年   755篇
  1997年   592篇
  1996年   689篇
  1995年   810篇
  1994年   686篇
  1993年   698篇
  1992年   639篇
  1991年   667篇
  1990年   592篇
  1989年   540篇
  1988年   511篇
  1987年   439篇
  1986年   417篇
  1985年   660篇
  1984年   960篇
  1983年   626篇
  1982年   833篇
  1981年   797篇
  1980年   582篇
  1979年   571篇
  1978年   342篇
  1977年   372篇
  1976年   334篇
  1974年   244篇
  1973年   263篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Many double-stranded RNA (dsRNA) viruses are capable of transcribing and capping RNA within a stable icosahedral viral capsid. The turret of turreted dsRNA viruses belonging to the family Reoviridae is formed by five copies of the turret protein, which contains domains with both 7-N-methyltransferase and 2′-O-methyltransferase activities, and serves to catalyze the methylation reactions during RNA capping. Cypovirus of the family Reoviridae provides a good model system for studying the methylation reactions in dsRNA viruses. Here, we present the structure of a transcribing cypovirus to a resolution of ~ 3.8 Å by cryo-electron microscopy. The binding sites for both S-adenosyl-l-methionine and RNA in the two methyltransferases of the turret were identified. Structural analysis of the turret in complex with RNA revealed a pathway through which the RNA molecule reaches the active sites of the two methyltransferases before it is released into the cytoplasm. The pathway shows that RNA capping reactions occur in the active sites of different turret protein monomers, suggesting that RNA capping requires concerted efforts by at least three turret protein monomers. Thus, the turret structure provides novel insights into the precise mechanisms of RNA methylation.  相似文献   
12.
The effect of implants’ number on overdenture stability and stress distribution in edentulous mandible, implants and overdenture was numerically investigated for implant-supported overdentures. Three models were constructed. Overdentures were connected to implants by means of ball head abutments and rubber ring. In model 1, the overdenture was retained by two conventional implants; in model 2, by four conventional implants; and in model 3, by five mini implants. The overdenture was subjected to a symmetrical load at an angle of 20 degrees to the overdenture at the canine regions and vertically at the first molars. Four different loading conditions with two total forces (120, 300 N) were considered for the numerical analysis. The overdenture displacement was about 2.2 times higher when five mini implants were used rather than four conventional implants. The lowest stress in bone bed was observed with four conventional implants. Stresses in bone were reduced by 61% in model 2 and by 6% in model 3 in comparison to model 1. The highest stress was observed with five mini implants. Stresses in implants were reduced by 76% in model 2 and 89% increased in model 3 compared to model 1. The highest implant displacement was observed with five mini implants. Implant displacements were reduced by 29% in model 2, and increased by 273% in model 3 compared to model 1. Conventional implants proved better stability for overdenture than mini implants. Regardless the type and number of implants, the stress within the bone and implants are below the critical limits.  相似文献   
13.
Transient Receptor Potential, Melastatin-related, member 4 (TRPM4) channels are Ca2+-activated Ca2+-impermeable cation channels. These channels are expressed in various types of mammalian tissues including the brain and are implicated in many diverse physiological and pathophysiological conditions. In the past several years, the trafficking processes and regulatory mechanism of these channels and their interacting proteins have been uncovered. Here in this minireview, we summarize the current understanding of the trafficking mechanism of TRPM4 channels on the plasma membrane as well as heteromeric complex formation via protein interactions. We also describe physiological implications of protein-TRPM4 interactions and suggest TRPM4 channels as therapeutic targets in many related diseases. [BMB Reports 2015; 48(1): 1-5]  相似文献   
14.
15.
The present research project details synthesis of new hybrid methanofullerenes based on acetylene and triazole esters of malonic acid containing 5Z,9Z-dienoic acids and fullerene C60 under Bingel-Hirsch conditions, including study of the cytotoxic activity with respect to Jurkat, K562, U937 and HL60 tumor cell lines. Hybrid methanofullerenes containing acetylenic fragments, unlike triazole substituents, were found to exhibit higher cytotoxicity, but are characterized by lower selectivity of action in relation to healthy cells.  相似文献   
16.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
17.
Both G-quadruplex and Z-DNA can be formed in G-rich and repetitive sequences on genome, and their formation and biological functions are controlled by specific proteins. Z-DNA binding proteins, such as human ADAR1, have a highly conserved Z-DNA binding domain having selective affinity to Z-DNA. Here, our study identifies the Z-DNA binding domain of human ADAR1 (hZαADAR1) as a novel G-quadruplex binding protein that recognizes c-myc promoter G-quadruplex formed in NHEIII1 region and represses the gene expression. An electrophoretic migration shift assay shows the binding of hZαADAR1 to the intramolecular c-myc promoter G-quadruplex-forming DNA oligomer. To corroborate the binding of hZαADAR1 to the G-quadruplex, we conducted CD and NMR chemical shift perturbation analyses. CD results indicate that hZαADAR1 stabilizes the parallel-stranded conformation of the c-myc G-quadruplex. The NMR chemical shift perturbation data reveal that the G-quadruplex binding region in hZαADAR1 was almost identical with the Z-DNA binding region. Finally, promoter assay and Western blot analysis show that hZαADAR1 suppresses the c-myc expression promoted by NHEIII1 region containing the G-quadruplex-forming sequence. This finding suggests a novel function of Z-DNA binding protein as a regulator of G-quadruplex-mediated gene expression.  相似文献   
18.
A 45-year-old-male who had underlying ulcerative colitis and presented with fever and dry cough. Initially, the patient was considered to have invasive aspergillosis due to a positive galactomannan assay. He was treated with amphotericin B followed by voriconazole. Nevertheless, the patient deteriorated clinically and radiographically. The lung biopsy revealed eosinophilic pneumonia, and ELISA for Toxocara antigen was positive, leading to a diagnosis of pulmonary toxocariasis. After a 10-day treatment course with albendazole and adjunctive steroids, the patient recovered completely without any sequelae. Pulmonary toxocariasis may be considered in patients with subacute or chronic pneumonia unresponsive to antibiotic agents, particularly in cases with eosinophilia.  相似文献   
19.
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se.  相似文献   
20.
Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of spontaneous mutations in a hypermutator (ΔmutS) strain of the bacterium Pseudomonas aeruginosa. After ∼644 generations of mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by rare mutations of large effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号